Пример простой нейросети

0. 38 26.10.20 10:45 Сейчас в теме
Пример реализации простой нейросети для решения частного случая квадратного уравнения.
Метод обучения - обратное распространение ошибки.
Релиз платформы 8.3.17.79.

Перейти к публикации

Комментарии
В избранное Подписаться на ответы Сортировка: Древо развёрнутое
Свернуть все
1. Xershi 1093 26.10.20 11:26 Сейчас в теме
Пару лет назад 1С заикнулась, что что-то подобное реализовывали, написал им на почту и ни какого ответа.
Наконец появилось больше примеров как это может работать!
2. kite2 38 26.10.20 14:51 Сейчас в теме
(1) Это интересная тематика, но когда я погрузился в нее, то понял, что это с трудом может быть побочной специализацией 1Сника с целью решения бизнес-задач. Тут надо сажать отдельного человека - специалиста по нейросетям и в придачу ему давать 1Сника. Потому что если относиться к таким задачам серьезно с целью решения реальных задач бизнеса, то это отнимет все рабочее время и на 1С ничего не останется. В общем, BIGDATA - это отдельная область знаний. Главный вопрос, на который пока лично мне трудно ответить, это экономическая эффективность бизнес-плана, основанного на использовании решения задач BIGDATA. Будет ли она, такая экономическая эффективность? Действительно, это область для развития фирмы 1С, которая может предложить какие-то типовые работающие механизмы. Стандартизация - вот ключ к успешности экономической составляющей бизнес-плана. А пока не будет стандартизации - это будет областью экспериментов.
3. Xershi 1093 26.10.20 15:02 Сейчас в теме
(2) когда в компании накоплен большой массив данных и нужно получить выхлоп, вот тогда это поможет. Главное чтобы специалисты были.
Поэтому кто найдёт нишу, тому и карты в руки.
4. SerVer1C 369 26.10.20 15:30 Сейчас в теме
>>> "Вот как-то примерно так и работают нейросети."
Вы точно разобрались, как они работают? Для чего вообще эта обработка? Чтобы доказать самому себе что 3 в кв. + 4 в кв. = 25 ? Нейронка обучается, чтобы потом она смогла делать аналогичные вычисления над подобными по структуре входными данными. А тут что я смогу вычислить?
5. kite2 38 26.10.20 18:01 Сейчас в теме
(4) Нет, я разобрался не точно. Я разобрался примерно. Обработка нужна для того, чтобы реализовать нейросеть и обучить ее методом обратного распространения ошибки. Более глубокий вариант, чтобы сеть могла решать любое квадратное уравнение, - это следующий шаг. Соответственно можно взять эту обработку за основу и пытаться это сделать, но если ее скачать, то алгоритмы уже не надо выдумывать самому - они уже есть. Их можно взять за основу. Не исключено, что когда у меня появится время, то я возьму эту обработку за основу, и попробую, а может это попробует кто-то другой. Соответственно эта обработка может создать любую нейросеть из 999 нейронов на слой из неограниченного ничем, кроме памяти, числа слоев. То есть эту обработку можно использовать для экспериментов с нейросетями и решать любые задачи, а не только решение уравнения. Количество входов не ограничено, но если кто-то скачает, то придется немного переписать обработку, чтобы она была более универсальной (в части подачи сигналов на входы). В общем, если подвести краткое резюме, то я просто хотел проверить алгоритмы функционирования нейросети. Получается, что работает для частного случая. То есть я хотел доказать не то, что 3^2 + 4^2 = 25, а что сеть действительно способна учиться. К сожалению развить эту идею до более правильной, когда она может решать любые квадратные уравнения, я пока не успел, но не исключено, что вернусь к этому вопросу в будущем. А вычислить вы можете по итогам, подавая на вход C правильные и неправильные ответы, то, что неправильные ответы отклоняются от нужной вероятности в сторону. Так вы поймете, что сетка обучилась на данном конкретном примере и работает. Ваша критика абсолютно объективна.
6. kite2 38 26.10.20 19:47 Сейчас в теме
(4) По логике надо было сконструировать более сложную сеть, и подавать на вход 1 , 1, 2; 1, 2, 5; 2, 1, 5; 2, 2, 8; 2, 3, 13 ... , а ожидаемую вероятность поставить = 1. Тогда бы сетка смогла решать разные уравнения. А я сконструировал сеть, которая просто принимает решение, о том, что уравнение решено приблизительно верно.
14. kite2 38 20.11.20 22:07 Сейчас в теме
(4) Кстати, сетка может работать как на поиск аналогичных решений, так и на принятие одного единственного решения.
7. avryanovalexey 83 30.10.20 19:52 Сейчас в теме
В учебных целях все прикольно )
Но для реальных таких задач платформа 1С точно не лучшее решение.

Во первых много математических расчетов делать на 1С не эффективно.
Во вторых на других языках реализовано уже множество библиотек машинного обучения.

А вот интегрировать это с 1С, и прогнозировать продажи, например, используя нейронки или другие алгоритмы - это думаю, то будущее, которое в ближайшие 5-10 лет придет в мир 1С.
8. kite2 38 31.10.20 18:09 Сейчас в теме
(7) Да в общем-то цель такая и была - немного разобраться. А задач много: прогноз, принятие решения о создании складских запасов на перспективу, индивидуализация в программе лояльности. Помню еще в 2006 году французы хотели продать на предприятие информационную систему, в которой в производственно-диспетчерском отделе решение о создании месячных планов принимала нейросетка.
10. avryanovalexey 83 01.11.20 13:12 Сейчас в теме
(8) в реальной нейросетке тысячи, если, а то и десятки и сотни тысяч нейронов. Поэтому разбираться с этим тоже лучше сразу на Питоне. Так как все основные библиотеки для реализации нейронок на Питоне представлены.
12. kite2 38 01.11.20 17:14 Сейчас в теме
(10) Спасибо за ценный совет! Изначально неправильный выбор - это зря пройденный путь.
user1464234; +1 Ответить
9. v25i85 31.10.20 18:37 Сейчас в теме
Бизнес рантайм не будет ждать результатов обучения машины. Тут скорее всего нейронка не востребована. А вот если её применить в планировании, то да, можно и поэкспериментировать в параллели с текущим планированием. Берите на заметку.
11. avryanovalexey 83 01.11.20 13:16 Сейчас в теме
(9) в реале это так и работает: нейронка или другой алгоритм обучается заранее и если нужно переобучается периодически. А на запросы бизнеса прогнозы выдает более оперативно. Например, обучен алгоритм, давать или не давать клиенту рассрочку на основе накопленных данных по клиентам за прошлые несколько лет. А по каждому новому клиенту система выдает прогноз очень быстро, на основе обученной заранее модели.
13. kite2 38 01.11.20 17:15 Сейчас в теме
Оставьте свое сообщение
Вопросы с вознаграждением